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We take up the question of when a state (=o-addi t ive  measure) on the product 
of logics ( =  o-orthomodular posets) depends on at most  countably many  coordi- 
nates. We show that it is always so provided there are no real-measurable 
cardinals. The manner  of dependence is a kind of convex combination. We derive 
some consequences of the latter statement. 

It is commonly accepted that the set of all statements on a quantum 
mechanical system can be represented by a o-orthomodular partially ordered 
set that is called a logic of the system (cf. Varadarajan, 1968). The states of 
the system then correspond to the a-additive measures on the logic. It is 
assumed in some quantum system theories that the logic of a collection of 
quantum mechanical systems can be identified with the product of the logics 
of the individual systems (cf. Beltrametti and Cassinelli, 1976; von 
Neumann, 1955). The following question then appears naturally: Are the 
states on the product determined by the "coordinate states"? We show in 
this note that it is indeed so provided the cardinality of that collection of 
logics is not "very big." It should be noted that the particular case 
concerning two logics has been examined in the paper by Gudder (1966). 

Let us first recall a few basic definitions (cf. Varadarajan, 1968; 
Gudder, 1966; etc.). 

Definition 1. A logic (=  a-orthom0dular poset in algebraic language) is 
a set L endowed with a partial ordering <~ and a unitary operation 'such that 

(i) 0, 1 E L  
(ii) a<-b=b'<~a ' for any a, b E L  

(iii) (a ') '  = a for any a E L 
(iv) a V a ' = l  for any a E L  
(v) V a n exists in L whenever a n EL ,  a n ~<a~ for n:/=k 

hEN 
(vi) b = a V ( b A a ' )  whenever a, b ~ L ,  a<-b 
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A subset K of a logic L is called orthogonal if a<~b ' for any pair a, 
bEK. 

Definition 2. Let ( L~ I a E I ) be a collection of logics. Denote by II ~ c z L~ 
the ordinary Cartesian product of the sets L~ and endow II~IL ~ canoni- 
cally with the relation -< and the unitary operation '. That is, if k =  
(kl, k 2 . . . .  ) E I I ~ z L  ~ and h =  (h 1, h2,.. .  ) EI-I~EzL~ then k-<h (respec- 
tively, k ' - -h )  iff k~<~h~ (respectively, k'~=h~) for any aEI. The set 
I I ~ z L  ~ (with < and ') is called the product of the collection (L~[a El). 

If kEII~zL ~ then k~ EL,~ denotes the ath coordinate of k. 

Proposition 1. Let ( L ~ I a E I )  be a collection of logics. Then II~EzL~ is 
a logic. 

The proof is evident. 

Definition 3. A state m on a logic L is a mapping m: L--,(0, t )  
satisfying the following properties: 

(i) m ( 1 ) = l  
(ii) if (an[nEN) is an orthogonal sequence of elements of L then 

m 

oo 

( V an)= ~ m(an) 
n E N  n = l  

We denote by S (L)  the set of all states on L. We are going to discuss 
how (and when) the states on the product of logics are induced by 
"coordinate states." The point of departure is the following observation. 

Theorem 1. Let (L~ lot E I}  be a collection of logics. Let (a  n In EN}  
be a countable subset of I and (p~,[nEN} be a partition of unity 
(i.e., p~o~>0 for any hEN and Y~=lp~ =1).  If {m~,[nEN} is a 
collection of states, m~, ES(L~,), then the mapping defined by the 
formula 

oo 

m(el,e2 . . . .  )= E p~.m~,(e~,) 
n = l  

is a state on IlaelLa. 

Proof. Evidently, m ( 1 ) = m ( 1 , 1 , . . . ) = l .  Suppose that (antnEN) is an 
orthogonal sequence of elements of [I~ezL~. We are to prove that 

m .__Vao = m(an)  
n = l  
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We may write m=m~ocp, where r is the projection of 1-I.EtL. onto 
II.~NL,,. and m I is the restriction of m to IInENL,x. Since (p only forgets 
coordinates we obtain that ( r (a.)1 n E N } remains an orthogonal family and 
moreover, cp(V.==la.)=V=.=l~p(a.). Put b.=tp(an), b=V~:tb, and con- 
sider the value of m(V.~: la.). We have 

m Va.  :m,o  .:V a. :m, vl (a.) :m,(b) 

p...m~.(b~.)= p..m~. V (bA).. 
n = l  n = l  k =1  

n~l {k~lPan'man[(bk)otn]} 

or oo 

m,(bk)---- 2~ m ( a g ) =  X m(a.) 
k = l  k = l  n = l  

and the proof is finished. [] 
Now, a question naturally arises if any state on the product can be 

expressed in the manner indicated above. The question turns out to be 
related to a set-theoretic assumption of the existence of real-measurable sets. 

Definition 4, Let I be a set, let the symbol exp I denote the collection of 
all subsets of I. We say that I is non-real-measurable if there is no a-additive 
measure/z: expI--, (0, 1) such that 

(i) tL(I) = 1 
(fi) /~(a}=0 for any a E 1  

Remark 1. The definition is a classical one and it is due to Ulam 
(1930). One can see easily that the set N of natural numbers is non-real- 
measurable. It is known (cf. Ulam, 1930) that if I is non-real-measurable 
then 2 t is also non-real-measurable. Further, if J~ is a non-real-measurable 
set for any a ~ I ,  I non-real-measurable, then U ~etJ~ is non-real-measurable 
as well. The latter propositions show that if real-measurable sets exist, which 
is not known within the ordinary set theories, they must be extremely big. It 
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seems therefore harmless to assume that all sets are non-real-measurable as 
soon as we are in the realm of quantum system theories. 

Theorem 2. Let {L~[aEI) be a collection of logics, 1 non-real- 
measurable. Suppose m is a state on I I ~ I L ~ .  Then we can find a 
sequence (et,[nEN) CI, states m~~ and a partition of unity 
{p~.ln ~ N }  such that 

o0 

m(e)=m(el ,e2, . . . )= ~ p,.m~,(e,.) 
n = l  

for any eEIIa~IL ~. 

Proof. Denote by e ~ the element of ~a~lLa whose all but a th  coordi- 
nates are zero and whose a th  coordinate is e. Consider the set M =  {a E 
I lm( l~)>0}.  We see firstly that the set of M is at most countable. Indeed, if 
it were not the case we could find a countable subset M '  of M such that 
m(l~)>~e for an e > 0  and each aEM', which is clearly absurd. We claim 
further that Y ~ M m ( I ~ )  = 1. Suppose the contrary. Then m(1A(V,EMI~)  ') 
= a > 0  and we can define a o-additive measure/~: e x p ( I - M ) ~  (0, a )  by 
putting, for any P C I - M ,  /~ (P )=m(V,EpI~) .  Since I - M  must be non- 
real-measurable, there exists an a E I - M  such that/~({a}) va0 and we have 
derived a contradiction. Thus Z ~ M m ( I " )  = 1. Let us define, for any a~M, 
a mapping m~: L~ -~ (0, 1) by setting 

m(e ~) 
m a ( e ) =  - -  

m ( l " )  

Then clearly m~ES(L~) and we have m(k)=Y~eMm(l~).m~(k~). The 
latter equality clearly holds true because m(V~cz_Mka)<~m(Vaez_Ml~)=O. 
We have obtained the desired expression of m and the proof  is finished. �9 

Remark 2. Note that the set-theoretic assumption in Theorem 2 can 
not be omitted. Suppose I is real-measurable and L~----(0, 1 } for any a E l .  
Let # be the measure which makes I real-measurable. Define m: II~ciL~ 
(0, 1) by setting m(e)=l~((ale~--1}). Then m is a state on 1-I~EIL~ which 
does not depend on countably many  coordinates. 

Let us derive two consequences of the latter theorem. Recall firstly that 
a state m is called pure if the equality m = cm i + (1 - c)m 2, 0 < c < 1, implies 
m~-ml  - -m  2. 

Corollary 1. Let L=I-I~zL~ be a product of logics, I a set of 
non-real-measurable cardinality. Then L is without pure states iff 
all L~ are without pure states. 
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Proof The proof is an easy consequence of Theorem 2. Observe that 
Corollary 1 is no longer valid as soon as there are real-measurable cardinals 
(Remark 2 and Theorem 6.6 in Varadarajan, 1968). [] 

The second corollary concerns logics with discrete centers. The center 
of a logic L is the set C ( L ) = { a E L l a  is compatible with all bEL}.  It is 
known that C(L) is a sub-o-algebra of L (Varadarajan, 1968; Maeda and 
Maeda, 1970). We say that L is a logic with discrete center if C(L) is 
isomorphic to the o-algebra of all subsets of a set. 

Before stating the second corollary, we need a generalized version of 
Theorem 2.14 in Varadarajan (1968). We shall deal with a certain class of 
logics. 

Definition 5. Suppose ~- is a cardinal. We say that a logic is a z-logic if 
the following statements on L hold: 

(i) L is a logic with discrete center and the cardinality of the set of all 
atoms in C(L) is not greater than z. 

(ii) If L'CL,  card L'---<z and any two elements of L'  are orthogonal, 
then L'  has the least upper bound in L. 

Denote, for an clement a EL, S o = ( h ~Llh<-a}. 

Proposition 2. Suppose L is a r-logic. If we put A = {ala is an atom in 
C(L)), then L is isomorphic to 1-I~AS,. The proof of the latter proposition 
can be modeled on the proof of Theorem 2.14 in Varadarajan (1968). The 
isomorphism i: L ~ I I S  a maps h E L  to the point of I-[~,~S~ whose a th  
coordinate is h A a. 

Definition 6. We say that a state m on a logic L is carried by an element 
h E L  if m(h ' ) - -0 .  

Corollary 2. Suppose L is a z-logic, z is non-real-measurable. (1) 
Any state on L is a strong convex combination of the states which 
are carried by atoms of C(L). (2) If there is no pure state on any 
Sa, a an atom of C(L), then there is no pure state on L. 

The proof follows immediately from Proposition 2 and Theorem 2. 
Let us comment in concluding that our Corollaries overlap somewhat 

with a result of Varadarajan. Namely, it can be shown easily that if I is 
countable then Corollary 1 follows from Theorem 6.19 in Varadarajan 
(1968) and so does Corollary 2.2 for z countable. Our results may therefore 
be viewed as generalizations of the quoted theorem to higher cardinals (or 
maybe to all cardinals). In our opinion, part 1 of Corollary 2 is new even for 
the case when the center has a countable number of atoms. 
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